Abstract

We study the 2p-core level x-ray photoemission spectra in ferromagnetic transition metals, Fe, Co, and Ni using a recently developed ab initio method.The excited final states are set up by distributing electrons on the one-electron states calculated under the fully screened potential in the presence of the core hole. We evaluate the overlap between these excited states and the ground state by using one-electron wave functions, and obtain the spectral curves as a function of binding energy. The calculated spectra reproduce well the observed spectra displaying interesting dependence on the element and on the spin of the removed core electron. The origin of the spectral shapes is elucidated in terms of the one-electron states screening the core hole. The magnetic splitting of the threshold energy is also estimated by using the coherent potential approximation within the fully screened potential approximation. It decreases more rapidly than the local spin moment with moving from Fe to Ni. It is estimated to be almost zero for Ni despite the definite local moment about 0.6\mu_B, in agreement with the experiment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.