Abstract

A first-principles study of the effect of local environment on the electronic structure of random face-centered cubic $\mathrm{Ag}\ensuremath{-}\mathrm{Pd}$ and $\mathrm{Cu}\ensuremath{-}\mathrm{Pd}$ alloys is presented. The core-level shift for each atom in the equiatomic alloys is calculated and compared to experimental data. It is shown how the initial-state and final-state distributions contribute to the total broadening. We find that the initial-state and the final-state contributions together increase the broadening for the investigated core levels in Cu and Ag, whereas they cancel each other to a large degree for Pd. We also demonstrated how local lattice relaxations influence the binding energy shift. We find that relaxation does not influence the average shift, though it is able to affect the broadening of the simulated x-ray photoelectron spectroscopy spectra.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.