Abstract
We investigate the influence of crystal local fields and excitonic effects on the spectrum of the second harmonic generation of three polytypes of silicon carbide by using time-dependent density-functional theory including many-body effects, namely, quasiparticle corrections through the scissors operator, crystal local field effects, and excitonic interaction. The relation between the scalar density response and the components of the rank 3 tensor ${d}^{(2)}$ is established by calculating the response along different polarization directions. We find that local-field effects, although necessary for a rigorous description in the theory, yield only small contributions to the spectra, whereas excitonic effects have a strong influence on the second harmonic generation. We compare static values of the second harmonic coefficients to recent measurements and obtain very good agreement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.