Abstract
Ab initio geometry optimizations were carried out at the HF/3-21G and HF/6-31+G** levels for the six tautomeric forms of 2-thiouracil (2TU, 2TU1, 2TU2, 2TU3, 2TU4, 2TU5) in the gas phase and in solution. To obtain a more definitive estimate of the relative stabilities for 2-thiouracil tautomers in the gas phase, single-point MP2/6-31+G** calculations were performed on the HF/6-31+G** optimized geometries. The tautomeric equilibria in 1,4-dioxane (epsilon = 2.21), acetonitrile (epsilon = 38), and in water (epsilon = 78.54) were studied using the self-consistent reaction field (SCRF) theory. The calculated relative free energies indicated that 2TU is the energetically preferred tautomer in the gas phase and in solution. The stability order of 2-thiouracil tautomers depends on the level of theory and the dielectric constant of the solvent. The obtained results are compared with the available experimental data.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have