Abstract
Based on the self-consistent ab initio full potential-linearized augmented plane wave method, the structural, electronic, optical, and thermodynamic properties of CdSe x Te1−x ternary semiconductor alloys have been investigated. The exchange–correlation potential was calculated using both the generalized gradient approximation (GGA) by Perdew–Burke–Ernzerhof (PBE) and the GGA by Engel–Vosko (EV-GGA). The ground-state properties are determined for the cubic bulk materials CdSe, CdTe, and their mixed crystals at various concentrations (x = 0.25, 0.5, and 0.75). Deviation of the lattice parameter from Vegard’s law and the bulk modulus from linear concentration dependence has been examined. The microscopic origins of the band-gap bowing parameter have been discussed. Moreover, the refractive index and the optical dielectric constant for CdSe x Te1−x are studied using different models. Besides, the thermodynamic stability of the alloys of interest is investigated by means of the miscibility critical temperature.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have