Abstract
We present a systematic ab initio study of clustering in hot dilute nuclear matter using nuclear lattice effective field theory with an SU(4)-symmetric interaction. We introduce a method called light-cluster distillation to determine the abundances of dimers, trimers, and alpha clusters as a function of density and temperature. Our lattice results are compared with an ideal gas model composed of free nucleons and clusters. Excellent agreement is found at very low density, while deviations from ideal gas abundances appear at increasing density due to cluster-nucleon and cluster-cluster interactions. In addition to determining the composition of hot dilute nuclear matter as a function of density and temperature, the lattice calculations also serve as benchmarks for virial expansion calculations, statistical models, and transport models of fragmentation and clustering in nucleus-nucleus collisions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have