Abstract
Mechanical strength is one of the significant properties of any solid polymer electrolyte of electrochemical devices, therefore; the ab initio study based on density functional theory is performed, and the bond strength of Poly ethylene oxide (PEO)5 polymer without and with Lithium Perchlorate (LiClO4) is investigated. The central oxygen atom of PEO is displaced till to respective bond is broken along X, Y, and Z directions, respectively. The same is simulated in the presence of LiClO4 and the minimum bond breaking energy which is also called the mechanical strength is calculated along three directions. Higher energy is required in compression of (PEO)5 along x and y axes than expansion, and vice versa along z axis. The same is observed for (PEO)5-LiClO4 polymer electrolyte along x and y axes, along z direction; the energy required is nearly same for compression/expansion. Due to this energy, crystalline nature of a polymer is reduced and amorphous nature is increased. In DOS analysis, the forbidden energy gap of (PEO)5-LiClO4 is reduced by 1.0 eV than (PEO)5; it causes to increase the lithium cation concentration and the ionic conductivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.