Abstract
Knowledge about excited states of carotenoids is essential for understanding photophysical processes underlying photosynthesis. However, due to the presence of a large number of optically dark states, experimental study of the excited-state manifold is limited to a significant extent. In this paper, we apply high-level ab initio quantum chemical methods to study the low-lying excited states of polyenes containing from 8 to 13 conjugated double bonds, which serve as a model for natural carotenoids. Vertical and adiabatic excitation energies from the ground 1Ag- state to the excited 2Ag-, 1Bu+, and 1Bu- states were evaluated by means of density matrix renormalization group (DMRG) with NEVPT2 perturbative correction. The energies of all excited states are highly sensitive to nuclear geometry, especially the 2Ag- state. Thus, the 2Ag- and 1Bu+ states interchange their relative positions upon geometry relaxation, while the vertical excitation energy to the 2Ag- state is rather high. At the same time, the 1Bu- state energy is shown to be higher than other studied excited states at any geometry. With relaxed geometries of the excited states, absorption and transient absorption spectra were calculated within the Franck-Condon approximation bridging the gap between experimental spectroscopic data and computational results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.