Abstract

Time-dependent density functional theory calculations with a proper treatment of the asymptotic form of the exchange-correlation potential have been performed on R(R')Si=O to predict vertical excitation energies. The species R(R')Si=O is used as a model for the binding of the -(R)Si=O chromophore to a porous silicon surface. The calculated vertical excitation energies are substantially lower than those determined previously and show that vertical excitation of the lone chromophore is possible for all types of substituents including electronegative ones with KrF laser excitation in contrast to other predictions. If the substituents are electropositive, the chromophore can also be excited by a nitrogen laser. These results, in concert with the effect of the porous silicon surface on the R(R')Si=O excited states, confirm our previous explanation of the photoluminescence of porous silicon as being due to the presence of Si=O chromophores and provide new insights into the photoexcitation process. The results show that the differences in the vertical and adiabatic excitation energies are strongly dependent on whether the substituents are electronegative or electropositive with the former leading to larger differences and the latter leading to smaller differences. The results for the energy differences are explained in terms of the changes in the Si=O bond length on vertical excitation and on the changes in bond angles, which are related to the ability of the Si center in the excited state to undergo an inversion process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call