Abstract
We present a variational density matrix approach to the thermal properties of interacting fermions in the continuum. The variational density matrix is parametrized by a permutation equivariant many-body unitary transformation together with a discrete probabilistic model. The unitary transformation is implemented as a quantum counterpart of neural canonical transformation, which incorporates correlation effects via a flow of fermion coordinates. As the first application, we study electrons in a two-dimensional quantum dot with an interaction-induced crossover from Fermi liquid to Wigner molecule. The present approach provides accurate results in the low-temperature regime, where conventional quantum Monte Carlo methods face severe difficulties due to the fermion sign problem. The approach is general and flexible for further extensions, thus holds the promise to deliver new physical results on strongly correlated fermions in the context of ultracold quantum gases, condensed matter, and warm dense matter physics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.