Abstract

Ammonium iodine (NH4I) as an important member of hydrogen-rich compounds has attracted a great deal of attention owing to its interesting structural changes triggered by the relative orientations of adjacent ammonium ions. Previous studies of ammonium iodide have remained in the low pressure range experimentally, which we first extended to so high pressure (250 GPa). We have investigated the structures of ammonium iodine under high pressure through ab initio evolutionary algorithm and total energy calculations based on density functional theory. The static enthalpy calculations show that phase V is stable until 85 GPa where a new phase Ibam is identified. Calculations of phonon spectra show that the Ibam phase is stable between 85 GPa and 101 GPa and the Cm phase is stable up to 130 GPa. In addition, ammonium iodine dissociates into NH3, H2, and I2 at 74 GPa. Subsequently, we analyzed phonon spectra and electronic band structures, finding that phonon softening is not the reason of dissociation and NH4I is always a semiconductor within the pressure range.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.