Abstract
Filamentary and rod-like assemblies are ubiquitous in biological systems, and single such assemblies can form one-dimensional (1D) crystals. New, intense X-ray sources, such as X-ray free-electron lasers, make it feasible to measure diffraction data from single 1D crystals. Such experiments would present some advantages, since cylindrical averaging of the diffraction data in conventional fiber diffraction analysis is avoided, there is coherent signal amplification relative to single-particle imaging, and the diffraction data are oversampled compared with those from a 3D crystal so that the phase problem is better determined than for a 3D crystal [Millane (2017). Acta Cryst. A73, 140-150]. Phasing of 1D crystal diffraction data is examined, by simulation, using an iterative projection algorithm. Ab initio phasing is feasible with realistic noise levels and little envelope information is required if a shrink-wrap algorithm is also incorporated. Some practical aspects of the proposed experiments are explored.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Acta crystallographica. Section A, Foundations and advances
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.