Abstract

ABSTRACTIn this work we investigate boron diffusion as a function of the Fermi-level position in crystalline silicon using ab-initio calculations and the nudged elastic band method to optimize diffusion paths. Based on our results, a new mechanism for B diffusion mediated by Si self-interstitials is proposed. We find a two-step diffusion process for all Fermi-level positions, which suggests a kick-out with a directly following kick-in process without extensive B diffusion on interstitial sites in-between. Our activation energy of 3.47 – 3.75 eV and diffusion-length exponent of -0.55 to -0.18 eV are in excellent agreement with experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.