Abstract

Although large-radius carbon nanotubes (CNTs) are now available in macroscopic quantities, little is known about their condensed phase. Large-scale density functional theory calculations predict a low energy phase in which the same-diameter "dog-bone" collapsed CNTs form a graphite-like phase with complex, anomalous grain boundaries (GBs). The excess GB volume does not prevent the strong van der Waals coupling of the flattened CNT sides into AB stacking. The associated GB energetics is dominated by the van der Waals energy penalty and high curvature bending of the loop CNT edges, which exhibit reactivity and flexoelectricity. The large density and superior mechanical rigidity of the proposed microstructural organization as well as the GB flexoelectricity are desirable properties for developing ultra-strong composites based on large-radius CNTs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.