Abstract

The photodissociation reaction of ICN in the A continuum has been theoretically studied based on ab initio potential energy surfaces and classical trajectories. Ab initio contracted spin–orbit configuration interaction calculations have been carried out to obtain potential energy surfaces (PES’s) of 3Π1, 3Π0+ and 1Π1 excited states, where results are fit to five diabatic potential functions and their couplings as functions of all three internal degrees of freedom. The transition dipoles at the Franck–Condon region have also been calculated. All the PES’s involved in photodissociation are bent near the Franck–Condon region. Classical trajectory calculations performed on these potential surfaces have produced results that are in agreement with various experimental findings and provide a basis for their interpretation. The calculations indicate that the absorption is a mixture of parallel and perpendicular transition. A reasonable I/I* branching ratio can be obtained by considering the effect of initial bending vibrations in addition to the character of mixed transitions. The I/I* channel selectivity of the CN rotation can be compared to the shape of PES’s with respect to the bending angle. The rotational excitation of the CN fragment is determined by the shape of PES’s on which trajectories travel before and after the transition. The higher rotational component in the I channel is attributed to the energy gradient of 1Π1 with respect to the bending angle at the transition region where the C–I distance is between 5.0 and 8.0 a.u. The lower component in the I channel emerges from 3Π1. The average rotational distribution obtained with the proper weight of Boltzmann populations and transition intensities is in agreement with the experiment. This interpretation can also be applied to the rotational quantum number dependence of anisotropy parameters. Trajectory calculations on the 3Π1 surface alone, give a single Boltzmann rotational distribution. Reflecting the shape of PES’s with respect to the CN distance, the product CN vibration on 3Π0+ and 1Π becomes suppressed while that on 3Π1 becomes slightly more excited. The anisotropic parameter was also analyzed. Some comments on the femtosecond transition spectroscopy are also made.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.