Abstract

Theoretical density functional calculations are performed on AuOnq− species for q = 0–3 and n = 1–4 in various spin states. AuOn species are found to be relatively more stable in their mono-anionic forms and behave as superhalogens for n ≥ 2. The maximum oxidation state of Au is found to be +7 in these species, but limited to +5. This fact is explained by considering interactions of AuOn superhalogens with K atom and which leads to the formation of more stable KAuOn complex up to n = 3, only. Thus, the present study is expected not only to motivate the synthesis of a new class of salts but also to assign the maximum oxidation state of gold. © 2013 Wiley Periodicals, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.