Abstract
The f-block ab initio correlation consistent composite approach was used to predict the dissociation energies of lanthanide sulfides and selenides. Geometry optimizations were carried out using density functional theory and coupled cluster singles, doubles, and perturbative triples with one- and two-component Hamiltonians. For the two-component calculations, relativistic effects were accounted for by utilizing a third-order Douglas-Kroll-Hess Hamiltonian. Spin-orbit coupling was addressed with the Breit-Pauli Hamiltonian within a multireference configuration interaction approach. The state averaged complete active space self-consistent field wavefunctions obtained for the spin-orbit coupling energies were used to assign the ground states of diatomics, and several diagnostics were used to ascertain the multireference character of the molecules.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have