Abstract

A number of proteins can assemble into chiral structures that display strong nonlinear optical activity. For instance, proteins such as myosin and collagen exhibit intense second harmonic generation (SHG). A large number of experimental studies on the SHG of proteins have been conducted; however few predictive models have been proposed that reliably relate the macroscopic SHG properties to the amino acids present in the peptidic chain. In this study, the linear polarizability (α), first (β) and second hyperpolarizability (γ) of all twenty amino acids was investigated by time-dependent Hartree-Fock calculations under physiological conditions. Ab initio calculations were performed using the GAMESSUS computational chemistry package. We have found that the aromatic amino acids give rise to the largest mean α, β and γ values. With this finding, we hope to apply this method to protein structures in order to understand how second harmonic signal is generated from individual amino acids, as well as, recognize how manipulation of the secondary structure of proteins might enhance SHG and third harmonic generation (THG).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.