Abstract
The electronic and geometric structures of tetracyclo[5.3.0.0(2,6).0(3,10)]deca-4,8-diene (hypostrophene) have been investigated by ab initio and DFT/B3LYP methods using the 6-31G* and 6-311G* basis sets. The double bonds of hypostrophene are endo-pyramidalized. The cationic intermediates and products formed in the addition reaction have been investigated using the HF/6-311G*, HF/6-311G**, and B3LYP/6-311G* methods. The bridged bromonium cation was more stable than the U-type cation. Considering that the bridged cation does not isomerize to the less stable U-type cation, it is not possible for the U-type product to be obtained in the reaction. The bridged bromonium cation transformed into the more stable N-type cation and the N-type product was obtained via this cation. The thermodynamic stability of the exo, exo and exo, endo isomers of the N-type dibromide molecule were almost identical. The N-type product was 16.6 kcal mol(-1) more stable than the U-type product.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have