Abstract

AbstractOne of the phospholipids, sphingomyelin (SM, N‐acyl‐sphingosine‐1‐phosphorylcholine) is the most abundant component of mammalian membranes in brain, nervous tissues, and human ocular lens. It plays an important role for apoptosis, aging, and signal transduction. Recently, Yappert and coworkers have shown that human lens sphingomyelin and its hydrogenated derivative, dihydrosphingomyelin (DHSM) are interacted with Ca2+ ions to develop human cataracts. Previously, we have investigated conformational differences between an isolated SM/DHSM molecule and Ca2+‐coordinated form by using density functional theory (DFT) for geometry optimization and normal mode analysis. As a result, one of stable conformers of SMs has a hydrogen bonding between hydroxyl group and phosphate group, whereas another conformer has a hydrogen bonding between hydroxyl and phosphate amide group. In this study, 31P‐Nuclear Magnetic Resonance (NMR) shielding constants of the obtained conformers are investigated by using ab initio and DFT with NMR‐gauge invariant atomic orbitals (NMR‐GIAO) calculations. The experimental 31P‐NMR chemical shifts of SMs and DHSMs have significant small value around 0.1 ppm. We consider the relative conformational changes between SMs and DHSMs affect the slight deviations of 31P‐NMR chemical shifts, and discuss intramolecular hydrogen bondings and the solvent effect in relation to NMR experimental reference. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2009

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.