Abstract

AbstractAb initio and Density Functional Theory (DFT) calculations were performed to determine the equilibrium geometries, charge distributions, spin density distributions, dipole moments, electron affinities (EAs), and C–O bond dissociation energies (BDEs) of CH2ClO2• CHCl2O2•, CCl3O2•, CF2ClO2•, CFCl2O2•, and CHFClO2• peroxyl radicals. The C–H BDEs of the parent methanes were calculated using the same levels of theories. Both MP2(full) and B3LYP methods, using the 6‐31G(d,p) basis set, were found to be capable of accurately predicting the geometries of peroxyl radicals. The B3LYP/6‐31G(d,p) method was found to be comparable to high ab initio levels in predicting C–O BDEs of studied peroxyl radicals and C–H BDEs of the parent alkanes. The progressive chlorine substitution of hydrogen atoms in methyl peroxyl radicals results in an increase (decrease) of the spin density on the terminal (inner) oxygen, a decrease in dipole moments, and an increase in electron affinities. The substitution of fluorine by chlorine in the series CF3O2• – CCl3O2• was found to lengthen (destabilize) the C–O bonds. Both C–O BDEs and EAs of peroxyl radicals (RO2•) were found to correlate well with Taft σ* substituent constants for the R groups. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call