Abstract

The molecular structures, electron affinities, and dissociation energies of the As(n)/As(-) (n) (n = 1-5) species have been examined using six density functional theory (DFT) methods. The basis set used in this work is of double-zeta plus polarization quality with additional diffuse s- and p-type functions, denoted DZP++. These methods have been carefully calibrated (Chem Rev 2002, 102, 231) for the prediction of electron affinities. The geometries are fully optimized with each DFT method independently. Three different types of the neutral-anion energy separations reported in this work are the adiabatic electron affinity (EA(ad)), the vertical electron affinity (EA(vert)), and the vertical detachment energy (VDE). The first dissociation energies D(e)(As(n-1)-As) for the neutral As(n) species, as well as those D(e)(As(-) (n-1)-As) and D(e) (As(n-1)-As(-)) for the anionic As(-) (n) species, have also been reported. The most reliable adiabatic electron affinities, obtained at the DZP++ BLYP level of theory, are 0.90 (As), 0.74 (As(2)), 1.30 (As(3)), 0.49 (As(4)), and 3.03 eV (As(5)), respectively. These EA(ad) values for As, As(2), and As(4) are in good agreement with experiment (average absolute error 0.09 eV), but that for As(3) is a bit smaller than the experimental value (1.45 +/- 0.03 eV). The first dissociation energies for the neutral arsenic clusters predicted by the B3LYP method are 3.93 eV (As(2)), 2.04 eV (As(3)), 3.88 eV (As(4)), and 1.49 eV (As(5)). Compared with the available experimental dissociation energies for the neutral clusters, the theoretical predictions are excellent. Two dissociation limits are possible for the arsenic cluster anions. The atomic arsenic results are 3.91 eV (As(-) (2) --> As(-) + As), 2.46 eV (As(-) (3) --> As(-) (2) + As), 3.14 eV (As(-) (4) --> As(-) (3) + As), and 4.01 eV (As(-) (5) --> As(-) (4) + As). For dissociation to neutral arsenic clusters, the predicted dissociation energies are 2.43 eV (As(-) (3) --> As(2) + As(-)), 3.53 eV (As(-) (4) --> As(3) + As(-)), and 3.67 eV (As(-) (5) --> As(4) + As(-)). For the vibrational frequencies of the As(n) series, the BP86 and B3LYP methods produce good results compared with the limited experiments, so the other predictions with these methods should be reliable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.