Abstract

The aim of the paper is to address fracture problems in nanoscale-sized cracked components using a simplified form of the strain gradient elasticity theory aided by ab initio calculations. Quantification of the material length scale parameter l1 of the simplified form of the strain gradient elasticity theory plays a key role in the analysis. The parameter l1 is identified for silicon and tungsten single crystals using first principles calculations. Specifically, the parameter l1 is extracted from phonon-dispersions generated by ab-initio calculations and, for comparison, by adjusting the analytical strain gradient elasticity theory solution for the displacement field near the screw dislocation with the ab-initio calculations of this field. The obtained results are further used in the strain gradient elasticity modeling of crack stability in nano-panels made of silicon and tungsten single crystals, where due to size effects and nonlocal material point interactions the classical linear fracture mechanics breaks down. The cusp-like crack tip opening profiles determined by the gradient elasticity theory and a hybrid atomistic approach at the moment of nano-panels fracture revealed a very good mutual agreement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.