Abstract

Extracellular recordings from the supraoptic nucleus of the rat established that vasopressinergic neurosecretory cells were excited by stimulation of cervical but not abdominal vagal afferents. This response was absent or significantly attenuated after microinjection of γ-aminobutyric acid into a region of the caudal medulla known to contain the A1 noradrenaline cell group. Consistent with the possible involvement of the A1 group, vagal stimulation approximately doubled the frequency of proto-oncogene expression in A1 noradrenaline neurons, as indicated by the occurrence of nuclear Fos-like immunoreactivity in tyrosine hydroxylase-positive neurons of the caudal ventrolateral medulla. Finally, A1 region microinjection of either the N- methyl- d-aspartic acid (NMDA) receptor antagonist dl-2-amino-5-phosphonovaleric acid (APV), or the non-NMDA antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), significantly reduced vasopressin cell responses to vagal stimulation. These findings suggest that: (i) the A1 group is an essential component in a pathway which relays facilitatory vagal input of cardiopulmonary origin to neurosecretory vasopressin cells, and (ii) the activation of A1 neurons in this pathway involves both NMDA and non-NMDA excitatory amino acid receptors, an observation consistent with an input to A1 cells which generates ‘mixed’ excitatory postsynaptic potentials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.