Abstract

An improved topology for sub-THz radiation detection realized in 65 nm CMOS, including an on-chip antenna and using zero biasing is presented in this article. The topology is based on a differential Colpitts topology working in reverse-mode and leverages the nonlinearity with respect to <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">v<sub>DS</sub></i> in subthreshold operation to rectify. The use of tuned inductors at the gates and sources of the transistor core create degenerative resonance feedback, which further enhances the responsivity while working with zero bias eliminates 1/ <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">f</i> noise to improve the NEP. Measurements demonstrated a voltage responsivity as high as 2 kV/W with a 3 dB RF BW of at least 50 GHz centered at 315 GHz and a record NEP of down to 3.5 pW/√Hz, verified both at zero-IF and using chopping from 0.5 Hz up to 2 kHz. The chip occupies an area of 0.165 mm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> including pads.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.