Abstract

To foster self-driving experimentation and address the reproducibility crisis in bioprocess development in a collaborative environment, a modular Workflow Management System (WMS) is required. In this work, a WMS based on Directed Acyclic Graphs that offers a modular and flexible design for plug-and-play integration of computational tools is presented. A case study is used to demonstrate that the implementation of a computational WMS in robotic experimental facilities promotes the application of Findable, Accessible, Interoperable and Re-usable principles, allowing researchers to readily share protocols, models, methods and data. As a proof of concept, we integrated three different computational workflows for online re-design of feeding rates in 24 parallel E. coli fed-batch cultivations producing elastin-like proteins. This approach provides a solid foundation for increasing scientific data generation in robotic experimental facilities, fostering open collaboration, and addressing the challenges of reproducibility in research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call