Abstract

Syn-rift exhumation of mantle rocks in a continental breakup zone was highlighted along the present-day west Iberian passive margin [e.g. Boillot et al., 1988, 1995; Whitmarsh et al., 1995, 2001; Beslier et al., 1996; Brun and Beslier, 1996; Boillot and Coulon, 1998; Krawczyk et al., 1996; Girardeau et al., 1998] and along the fossil Tethyan margins [e.g. Froitzheim and Manatschal, 1996; Manatschal and Bernoulli, 1996; Marroni et al., 1998; Muntener et al., 2000; Desmurs et al., 2001]. Along the west Iberian margin, serpentinized peridotite and scarce gabbro and basalt lay directly under the sediments, over a 30 to 130 km-wide transition between the thinned continental crust and the first oceanic crust [Girardeau et al., 1988, 1998; Kornprobst and Tabit, 1988; Boillot et al., 1989; Beslier et al., 1990, 1996; Cornen et al., 1999]. The formation of a wide ocean-continent transition (OCT), mostly controlled by tectonics and associated with an exhumation of deep lithospheric levels, would be an essential stage of continental breakup and a characteristic of magma-poor passive margins. The southwest Australian margin provides an opportunity to test and to generalize the models proposed for the west Iberian margin, as both margins present many analogies. The south Australian margin formed during the Gondwana breakup in the Mesozoic, along a NW-SE oblique extension direction [Willcox and Stagg, 1990]. From north to south, the continental slope is bounded by (1) a magnetic quiet zone (MQZ) where the nature of the basement is ambiguous [Talwani et al., 1979; Tikku and Cande, 1999; Sayers et al., 2001], (2) a zone where the basement shows a rough topography associated with poorly expressed magnetic anomalies [Cande and Mutter, 1982; Veevers et al., 1990; Tikku and Cande, 1999; Sayers et al., 2001], and which is the eastward prolongation of the Diamantina Zone, and (3) an Eocene oceanic domain. The continental breakup zone is believed to be located near or at the southern edge of the MQZ [Cande and Mutter, 1982; Veevers et al., 1990; Sayers et al., 2001]. Breakup is dated at 125 Ma [Stagg and Willcox, 1992], 95 ± 5 Ma [Veevers, 1986] or at 83 Ma [Sayers et al., 2001], and followed by ultra-slow seafloor spreading until the Eocene (43 Ma), and fast spreading afterwards [Weissel and Hayes, 1972; Cande and Mutter, 1982; Veevers et al., 1990; Tikku and Cande, 1999]. The western end of the margin (fig. 1) is starved and bounded in the OCT by basement ridges where peridotite, gabbro and basalt were previously dredged [Nicholls et al., 1981]. Altimetry data [Sandwell and Smith, 1997] show that some of these ridges are continuous over 1500 km along the OCT of the south Australian margin and of the conjugate Antarctic margin. The objectives of the MARGAU/MD110 cruise (May-June 1998; [Royer et al., 1998]; fig. 2) were to define the morpho-structure and the nature and evolution of the basement in the SW Australian OCT. An area of 180 000 km2 was explored with swath bathymetry. Gravimetric data (11382 km) were simultaneously recorded whereas few single channel seismic (1353 km) and magnetic (5387 km) data were obtained due to technical difficulties. Crystalline basement rocks, made of varied and locally well-preserved lithologies, were dredged at 11 sites located on structural highs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.