Abstract

In this paper, a peak-to-average-ratio (PAPR) reduction scheme based on a weighted orthogonal frequency-division multiplexing (OFDM) signal is proposed to reduce the PAPR without distortion in removing the weight at the receiver side. In the proposed scheme, a weight is imposed on each discrete OFDM signal via a certain kind of a bandlimited signal, and an OFDM signal formed with the weighted discrete data is then considered before a high power amplifier (HPA), whereas the original signal can be recovered completely at the receiver side. Meanwhile, the time duration needed to transmit the weighted OFDM signal is the same as the time duration for the original OFDM signal. The effectiveness of the proposed scheme is evaluated with computer simulations. According to numerical results, the PAPR of the weighted OFDM signal is smaller than that of the clipping and filtering (C&F) method, and the bit-error-rate (BER) performance of the weighted OFDM system is improved compared with the C&F method. Here, the proposed method is simpler than the C&F method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.