Abstract

The main disadvantage of Orthogonal Frequency Division Multiplexing (OFDM) signal is the high peak-to-average power ratio (PAPR) which influences the system power efficiency and system performance in the presence of nonlinearities within the high power amplifier (HPA). The error vector magnitude (EVM) is one of the performance metrics by communications standards in OFDM system. In this paper, a novel PAPR reduction method from geometric angle analysis is proposed which keeps the EVM and bit-error-rate (BER) performance. In our method, a threshold vector circle is designed in frequency domain in order to adjust the amplitude and phase of the OFDM signal constellation points to near the ideal points. Simulation results show that PAPR of a QPSK modulated OFDM signal is reduced from 10.98dB to 7.502dB with an EVM reduction of 2.57%. This technique should vastly improve the performance of OFDM signal in communication system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.