Abstract

Fuzzy C-means (FCM) is an important clustering algorithm with broad applications such as retail market data analysis, network monitoring, web usage mining, and stock market prediction. Especially, parameters in FCM have influence on clustering results. However, a lot of FCM algorithm did not solve the problem, that is, how to set parameters. In this study, we present a kind of method for computing parameters values according to role of parameters in the clustering process. New parameters are assigned to membership and typicality so as to modify objective function, on the basis of which Lagrange equation is constructed and iterative equation of membership is acquired, so does the typicality and center equation. At last, a new possibilistic fuzzy C-means based on the weight parameter algorithm (WPFCM) was proposed. In order to test the efficiency of the algorithm, some experiments on different datasets are conducted to compare WPFCM with FCM, possibilistic C-means (PCM), and possibilistic fuzzy C-means (PFCM). Experimental results show that iterative times of WPFCM are less than FCM about 25% and PFCM about 65% on dataset X12. Resubstitution errors of WPFCM are less than FCM about 19% and PCM about 74% and PFCM about 10% on the IRIS dataset.

Highlights

  • Clustering is a method of unsupervised learning and had been applied in various fields, including data mining, pattern recognition, computer vision, and bioinformatics

  • fuzzy possibilistic C-means (FPCM) reduced sensitivity to noise in fuzzy C-means (FCM) and resolved coincident problem in possibilistic C-means (PCM); typicality value became very small as dataset scale increasing for the reason of row sum constraints

  • A new possibilistic fuzzy C-mean based on weight parameters was proposed according to the importance of membership and typicality in the clustering process

Read more

Summary

A Weight Possibilistic Fuzzy C-Means Clustering Algorithm

Fuzzy C-means (FCM) is an important clustering algorithm with broad applications such as retail market data analysis, network monitoring, web usage mining, and stock market prediction. Parameters in FCM have influence on clustering results. A lot of FCM algorithm did not solve the problem, that is, how to set parameters. A new possibilistic fuzzy C-means based on the weight parameter algorithm (WPFCM) was proposed. In order to test the efficiency of the algorithm, some experiments on different datasets are conducted to compare WPFCM with FCM, possibilistic C-means (PCM), and possibilistic fuzzy C-means (PFCM). Experimental results show that iterative times of WPFCM are less than FCM about 25% and PFCM about 65% on dataset X12. Resubstitution errors of WPFCM are less than FCM about 19% and PCM about 74% and PFCM about 10% on the IRIS dataset

Introduction
Related Works
Experiments
Findings
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.