Abstract

The use of multi-sensor tags is increasingly providing insights into the behavior of whales. However, due to limitations in tag attachment duration and the transmission bandwidth of the Argos system, little is known about fine-scale diving behavior over time or the reliability of assigning behavioral states based on horizontal movement data for whale species. How whales use the water column while migrating has not been closely examined, yet the strategy used is likely to influence the vulnerability of whales to ship strike. Here we present information from a rare week long multi-sensor tag deployment on a pygmy blue whale (Balaenoptera musculus brevicauda) that provided a great opportunity to examine the fine-scale diving behavior of a migrating whale and to compare the occurrence of feeding lunges with assigned behavioral states. The depth of migratory dives was highly consistent over time and unrelated to local bathymetry. The mean depth of migratory dives (~13 m when corrected for the tag position on the whale) was just below the threshold depth (12 m) that blue whales are predicted to travel below to remove the influence of wave drag at the surface. The whale spent 94 % of observed time and completed 99 % of observed migratory dives within the range of large container ship drafts (<24 m). Areas of high residence identified using the horizontal movement data (FastLoc GPS) did not reflect where lunge feeding occurred. The lack of correspondence between areas of high residence inferred from horizontal movement data and the locations where the whale performed feeding lunges highlights the need for further research to determine whether movement models can accurately detect whale feeding areas or only areas of prey searching. While migrating, the whale made dives to a depth that is likely to allow it to avoid wave drag and maximize horizontal movement. Although this strategy may reduce energy expenditure during migration, it also placed the whale at greater risk of ship strike for a much longer period than currently thought. If other whales have similar diving behavior to this animal during migration, many whale species may spend much longer periods than currently estimated within the parts of the water column where the risk of ship strike is high.

Highlights

  • The use of multi-sensor tags is increasingly providing insights into the behavior of whales

  • The mean depth of migratory dives (~13 m when corrected for the tag position on the whale) was just below the threshold depth (12 m) that blue whales are predicted to travel below to remove the influence of wave drag at the surface

  • The lack of correspondence between areas of high residence inferred from horizontal movement data and the locations where the whale performed feeding lunges highlights the need for further research to determine whether movement models can accurately detect whale feeding areas or only areas of prey searching

Read more

Summary

Introduction

The use of multi-sensor tags is increasingly providing insights into the behavior of whales. Morphological adaptations such as a streamlined body shape to reduce drag, and the use of oscillatory propulsion allowing for thrust generation on both the upward and downward stroke reduce energy expenditure and increase propulsion efficiency [5]. In addition to these morphological adaptations, behavioral adaptations have been shown in many marine mammals, such as the use of energy-efficient stroke and glide behavior while diving [6]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.