Abstract

This paper considers Weber's law and proposes a new non-convex model for images contaminated by Gaussian noise and Rayleigh noise. The alternating direction method of multipliers (abbreviated as ADMM) is a recent popular method that can handle convex and non-convex problems well. This paper compares denoising effect between ADMM and the Euler-Lagrange equation method applied to the non-convex model. The numerical experimental results show that ADMM performs better and has a higher Peak Signal to Noise Ratio.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.