Abstract
Wearable technologies have been developed for healthy aging. The technology for electromyography (EMG)-controlled functional electrical stimulation (FES) systems has been developed, but research on how helpful it is in daily life has been insufficient. The purpose of this study was to investigate the effect of the EMG-controlled FES system on muscle morphology, balance, and gait in older adults. Twenty-nine older adults were evaluated under two randomly assigned conditions (non-FES and FES assists). Muscle morphology, balance, gait function, and muscle effort during gait were measured using ultrasonography, a physical test, a gait analysis system, and EMG. The EMG-controlled FES system improved gait speed by 11.1% and cadence by 15.6% (P< 0.01). The symmetry ratio of the bilateral gastrocnemius was improved by 9.9% in the stance phase and 11.8% in the swing phase (P< 0.05). The degrees of coactivation of the knee and ankle muscles were reduced by 45.1% and 50.5%, respectively (P< 0.05). Balance improved by 6-10.7% (P< 0.01). The EMG-controlled FES system is useful for balance and gait function by increasing muscle symmetry and decreasing muscle coactivation during walking in older adults.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have