Abstract

This article presents a method for adaptively representing multidimensional data cubes using wavelet view elements in order to more efficiently support data analysis and querying involving aggregations. The proposed method decomposes the data cubes into an indexed hierarchy of wavelet view elements. The view elements differ from traditional data cube cells in that they correspond to partial and residual aggregations of the data cube. The view elements provide highly granular building blocks for synthesizing the aggregated and range-aggregated views of the data cubes. We propose a strategy for selectively materializing alternative sets of view elements based on the patterns of access of views. We present a fast and optimal algorithm for selecting a non-expansive set of wavelet view elements that minimizes the average processing cost for supporting a population of queries of data cube views. We also present a greedy algorithm for allowing the selective materialization of a redundant set of view element sets which, for measured increases in storage capacity, further reduces processing costs. Experiments and analytic results show that the wavelet view element framework performs better in terms of lower processing and storage cost than previous methods that materialize and store redundant views for online analytical processing (OLAP).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.