Abstract
In our increasingly data-rich environment, factor models have become the workhorse approach for modelling and forecasting purposes. However, factors are not observable and have to be estimated. In particular, the space spanned by the unknown factors is typically estimated via principal components. This paper proposes a novel procedure for estimating the factor space, resorting to a wavelet-based multiscale principal component analysis. A Monte Carlo simulation study is used to demonstrate that such an approach may improve both the estimation and the forecasting performances of factor models. The empirical application then illustrates its usefulness for forecasting GDP growth and inflation in the United States.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.