Abstract
This paper discusses the forecasting performance of alternative factor models based on a large panel of quarterly time series for the german economy. One model extracts factors by static principals components analysis, the other is based on dynamic principal components obtained using frequency domain methods. The third model is based on subspace algorithm for state space models. Out-of-sample forecasts show that the prediction errors of the factor models are generally smaller than the errors of simple autoregressive benchmark models. Among the factors models, either the dynamic principal component model or the subspace factor model rank highest in terms of forecast accuracy in most cases. However, neither of the dynamic factor models can provide better forecasts than the static model over all forecast horizons and different specifications of the simulation design. Therefore, the application of the dynamic factor models seems to provide only small forecasting improvements over the static factor model for forecasting German GDP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.