Abstract
T. Francis Ogilvie (1972) developed a Green's function method for calculating the wave profile of slender ships with fine bows. He recognized that near a slender ship's bow, rates of change of flow variables axially should be greater than those typically assumed in slender body theory. Ogilvie's result is still a slender body theory in that the rates of change in the near field are different transversely (a half-order different) than axially; however, the difference in order of magnitude between them is less than in the usual slender body theory. Typical of slender body theory, this formulation results in a downstream stepping solution (along the ship's length) in which downstream effects are not reflected upstream. Ogilvie, however, developed a solution only for wedge-shaped bodies. Taravella, Vorus, and Givan (2010) developed a general solution to Ogilvie's formulation for arbitrary slender ships. In this article, the general solution has been expanded for use on moderate to high-speed ships. The wake trench has been accounted for. The results for wave resistance have been calculated and are compared with previously published model test data.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have