Abstract

We investigate the flexible flow shop scheduling problem with limited or unlimited intermediate buffers. A common objective of the problem is to find a production schedule that minimizes the completion time of jobs. Other objectives that we also consider are minimizing the total weighted flow time of jobs and minimizing the total weighted tardiness time of jobs. We propose a water-flow algorithm to solve this scheduling problem. The algorithm is inspired by the hydrological cycle in meteorology and the erosion phenomenon in nature. In the algorithm, we combine the amount of precipitation and its falling force to form a flexible erosion capability. This helps the erosion process of the algorithm to focus on exploiting promising regions strongly. To initiate the algorithm, we use a constructive procedure to obtain a seed permutation. We also use an improvement procedure for constructing a complete schedule from a permutation that represents the sequence of jobs in the first stage of the scheduling problem. To evaluate the proposed algorithm, we use benchmark instances taken from the literature and randomly generated instances of the scheduling problem. The computational results demonstrate the efficacy of the algorithm. We have also obtained several improved solutions for the benchmark instances using the proposed algorithm. We further illustrate the algorithm's capability for solving problems in practical applications by applying it to a maltose syrup production problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.