Abstract

A metal-organic framework (MOF), {(Me2NH2)2[Zn6(μ4-O)(ad)4(BPDC)4]}n (JXNU-4; ad- = adeninate), with an anionic three-dimensional (3D) framework constructed from one-dimensional (1D) columnar [Zn6(ad)4(μ4-O)]n secondary building units (SBUs) and 4,4'-biphenyldicarboxylate (BPDC2-) ligand, was prepared. The anionic 3D framework has 1D square channels with an aperture of about 9.8 Å and exhibits a carboxylate-O-decorated pore environment. The microporous nature of JXNU-4 was established by the N2 adsorption data, which gives Langmuir and Brumauer-Emmett-Teller surface areas of 1800 and 1250 m2 g-1, respectively. Noticeably, JXNU-4 shows potential as a separation agent for the selective removal of propane and ethane from natural gas with high selectivities of 144 for C3H8/CH4 (5:95) and 14.6 for C2H6/CH4 (5:95), respectively. Most importantly, JXNU-4 shows an aqueous-phase adsorption of a positively charged ion of methylene blue selectively over a negatively charged ion of resorufin, which is pertinent to the anionic nature of the framework, and provides a size-exclusive sieving of methylene blue over other positively charged ions of Janus Green B and ethyl violet, which is relevant to its pore structure, enabling the efficient aqueous-phase separation of organic dyes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.