Abstract

A wafer-level microwave multi-chip module (MMCM) packaging process is presented. Thick photosensitive-benzocyclobutene (photo-BCB) polymer (about 25 µm/layer) is used as the dielectric for its simplified process and the capability of obtaining desirable electrical, chemical and mechanical properties at high frequencies. The MMCM packaging structure contains a monolithic microwave integrated circuit (MMIC) chip embedded in a lossy-silicon wafer, a microwave band-pass filter (BPF) and two layers of BCB/Au interconnection. Key processes of fabrication are described in detail. The non-uniformity of BCB film and the sidewall angle of the via-holes for inter-layer connection are tested. Via-chains prepared by metal/BCB multilayer structures are tested through the Kelvin test structure to investigate the resistances of inter-layer connection. The average value is measured to be 73.5 mΩ. The electrical characteristic of this structure is obtained by a microwave transmission performance test from 15 to 30 GHz. The measurement results show good consistency between the bare MMIC die and the packaged die in the test frequency band. The gain of the MMIC chip after packaging is better than 18 dB within the designed operating frequency range (from 23 to 25 GHz). When the packaged MMIC chip is connected to a BPF, the maximum gain is still measured to reach 11.95 dB at 23.8 GHz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call