Abstract

A novel volume-of-fluid method to simulate three-dimensional hexagonal solidification processes is presented. The Gibbs-Thomson temperature is calculated using the weighted mean curvature and a height function technique. This boundary condition is applied directly on the sharp interface. A geometric unsplit advection scheme is used to advance the interface to the next timestep. The phase change model is validated against analytical similarity solutions in both two and three dimensions. The influence of the grid resolution on the dendritic growth is studied. Sharper dendrites for increasing resolution were found as a result of the model for the anisotropic surface energy density. Three-dimensional hexagonal growth could be achieved and constrictions were observed in both the basal and prismal planes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.