Abstract

A new secondary organic aerosol (SOA) parameterization based on the volatility basis set is implemented in a regional air quality model WRF‐CHEM. Full meteorological and chemistry simulations are carried out for the United States for August–September 2006. Predicted organic aerosol (OA) concentrations are compared against surface measurements made by several networks and aircraft data from the TexAQS‐2006 field campaign. Elemental carbon simulations are also evaluated in order to evaluate the model's ability to capture their emissions, transport, and removal. Certain measurement limitations, such as daily averaged OA concentrations, impose some difficulties on the model evaluation, and hourly averaged OA measurements provide more informative constraints compared to daily concentrations. The updated model demonstrates a significant improvement in simulating the OA concentrations compared to the standard WRF‐CHEM, which predicts very little SOA. The improvement in organic carbon (OC) predictions is noticeable in correlations and model bias. The correlations of OC exceed that of the persistence forecasts for hourly concentrations in the southeast United States during daytime. The updated traditional SOA yields still lead to an underestimation of observed OA, while addition of the multigenerational volatile organic compound (VOC) oxidation drastically improves model performance. However, several key uncertainties remain in SOA formation and loss mechanisms, which are characterized through several perturbation simulations. Dry deposition of VOC oxidation products is an important factor in the atmospheric SOA budget. The combination of the biogenic VOC emissions, updated SOA yields, and aging mechanism result in biogenic SOA being the dominant OA component for much of the nonurban United States.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.