Abstract

We present a neuromorphic VLSI device which comprises hybrid ana- log/digital circuits for implementing networks of spiking neurons. Each neuron in- tegrates input currents from a row of multiple analog synaptic circuit. The synapses integrate incoming spikes, and produce output currents which have temporal dy- namics analogous to those of biological post synaptic currents. The VLSI device can be used to implement real-time models of cortical networks, as well as real-time learning and classification tasks. We describe the chip architecture and the analog circuits used to implement the neurons and synapses. We describe the functionality of these circuits and present experimental results demonstrating the network level functionality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.