Abstract

This paper proposes a novel decision feedback differential phase detection (DF-DPD) for M-ary DPSK. A conventional differential phase detection method for M-ary Differential Phase Shift Keying (DPSK) can simplify the receiver architecture. However, it possesses a poorer bit error rate (BER) performance than coherent detection because of the prior noisy phase sample. Multiple-symbol differential detection methods, such as maximum likelihood differential phase detection, Viterbi-DPD, and DF-DPD using L-1 previous detected symbols, have attempted to improve BER performance. As the detection length, L, increases, the BER performance of the DF-DPD improves but the complexity of the architecture increases dramatically. This paper proposes a simplified DF-DPD architecture replacing the conventional delay and additional architecture with an accumulator. The proposed architecture also improves BER performance by minimizing the current differential phase noise through the accumulation of previous differential phase noise samples. The simulation results show that the BER performance of the proposed architecture approaches that of a coherent detection with differential decoding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.