Abstract
ABSTRACT A vision-based experimental methodology was developed for monitoring the surface state evolution of specimens during twin-disc rolling contact tests, aimed at providing information for identifying the damage phenomena. The system is based on a high-speed camera and three laser pointers for illuminating the specimen surface. Images of the specimen surface are acquired and processed, allowing the definition of synthetic surface state indexes, as well as the section profiles of the surface. The vision system was applied to alternated dry–wet rolling–sliding contact tests on railway wheel steel specimens, highlighting its effectiveness in the damage evaluation. The potential of the section profile reconstruction as a tool for surface topology analysis was shown.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have