Abstract
We consider a model for the quasistatic, bilateral, adhesive and frictionless contact between a viscoelastic body and a rigid foundation. The adhesion process on the contact surface is modeled by a surface internal variable, the bonding field, and the tangential shear due to the bonding field is included. The problem is formulated as a coupled system of a variational equality for the displacements and an integro-differential equation for the bonding field. The existence of a unique weak solution for the problem is established by construction of an appropriate mapping which is shown to be a contraction on a Hilbert space. We also consider the problem describing the bilateral contact between two viscoelastic bodies, and establish similar results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.