Abstract

Structure-based virtual screening techniques require reliable scoring functions to discriminate potential substrates effectively. In this study we compared the performance of GOLD, PMF, DOCK and FlexX scoring functions in FlexX flexible docking to cytochrome P450cam binding site. Crystal structures of protein-substrate complexes were most effectively reproduced by the FlexX/PMF method. On the other hand, the FlexX/GOLD approach provided the best correlation between experimental binding constants and predicted scores. Binding modes selected by the FlexX/PMF approach were rescored by GOLD to obtain a reliable measure of binding energetics. The effectiveness of the FlexX/PMF/GOLD method was demonstrated by the correct classification of 32 out of the 33 experimentally studied compounds and also in a virtual HTS test on a library of 10,000 compounds. Although almost all the available functions were developed to be general, our study on cytochrome P450cam substrates suggests that careful selection or even tailoring the scoring function might increase the prediction power of virtual screens significantly. The FlexX/PMF/GOLD methodology was tested on cytochrome P450 3A4 substrates and inhibitors. This preliminary study revealed that the combined function was able to recognise 334 out of the 345 compounds bound to 3A4.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call