Abstract
BackgroundAntiretroviral therapy (ART) was rolled-out in Ethiopia in 2005, but there are no reports on outcome of ART and human immunodeficiency virus drug resistance (HIVDR) at national level. We described acquired drug resistance mutations in pol gene and performed a viral genome wide association study in virologic treatment failure patients who started first line ART during 2009–2011 in the first large countrywide HIV cohort in Ethiopia.MethodsThe outcome of tenofovir (TDF)- and zidovudine (ZDV)-based ART was defined in 874 ART naïve patients using the on-treatment (OT) and intention-to-treat (ITT) analyses. Genotypic resistance testing was done in patients failing ART (> 1000 copies/ml) at month 6 and 12. Near full-length genome sequencing (NFLG) was used to assess amino acid changes in HIV-1 gag, pol, vif, vpr, tat, vpu, and nef genes between paired baseline and month 6 samples.ResultsHigh failure rates were found in ITT analysis at month 6 and 12 (23.3%; 33.9% respectively). Major nucleoside and non-nucleoside reverse transcriptase (NRTI/NNRTI) drug resistance mutations were detected in most failure patients at month 6 (36/47; 77%) and month 12 (20/30; 67%). A high rate of K65R was identified only in TDF treated patients (35.7%; 50.0%, respectively). No significant difference was found in failure rate or extent of HIVDR between TDF- and ZDV- treated patients. All target regions of interest for HIVDR were described by NFLG in 16 patients tested before initiation of ART and at month 6.ConclusionIn this first Ethiopian national cohort, a high degree of HIVDR was seen among ART failure patients, independent on whether TDF- or ZDV was given. However, the major reason to ART failure was lost-to-follow-up rather than virologic failure. Our NFLG assay covered all relevant target genes for antiretrovirals and is an attractive alternative for HIVDR surveillance.
Highlights
Antiretroviral therapy (ART) was rolled-out in Ethiopia in 2005, but there are no reports on outcome of ART and human immunodeficiency virus drug resistance (HIVDR) at national level
We evaluated our Near full-length genome sequencing (NFLG) assay for its capacity to amplify all HIVDR target regions of interest since it is an attractive alternative for Human immunodeficiency virus (HIV) drug resistance mutation (DRM) surveillance
Patients A total of 874 ART naïve patients were enrolled into the Advanced Clinical Monitoring (ACM) of ART in Ethiopia from seven university hospitals during 2009–2011 as we described elsewhere [13, 14]
Summary
Antiretroviral therapy (ART) was rolled-out in Ethiopia in 2005, but there are no reports on outcome of ART and human immunodeficiency virus drug resistance (HIVDR) at national level. We described acquired drug resistance mutations in pol gene and performed a viral genome wide association study in virologic treatment failure patients who started first line ART during 2009–2011 in the first large countrywide HIV cohort in Ethiopia. A few studies with relatively small number of patients from limited geographical regions in Ethiopia have reported ART failure rates, including acquired HIV drug resistance (HIVDR) [9,10,11,12]. Using a large nationwide HIV cohort, we assessed treatment failure, including acquired HIVDR by genotypic resistance testing and performed viral genome wide association studies by near-full length genome (NFLG) sequencing. We evaluated our NFLG assay for its capacity to amplify all HIVDR target regions of interest since it is an attractive alternative for HIV drug resistance mutation (DRM) surveillance
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.