Abstract
Peakons (peaked solitons) are particular solutions admitted by certain nonlinear PDEs, most famously the Camassa–Holm shallow water wave equation. These solutions take the form of a train of peak-shaped waves, interacting in a particle-like fashion. In this article we give an overview of the mathematics of peakons, with particular emphasis on the connections to classical problems in analysis, such as Padé approximation, mixed Hermite–Padé approximation, multi-point Padé approximation, continued fractions of Stieltjes type and (bi)orthogonal polynomials. The exposition follows the chronological development of our understanding, exploring the peakon solutions of the Camassa–Holm, Degasperis–Procesi, Novikov, Geng–Xue and modified Camassa–Holm (FORQ) equations. All of these paradigm examples are integrable systems arising from the compatibility condition of a Lax pair, and a recurring theme in the context of peakons is the need to properly interpret these Lax pairs in the sense of Schwartz’s theory of distributions. We trace out the path leading from distributional Lax pairs to explicit formulas for peakon solutions via a variety of approximation-theoretic problems, and we illustrate the peakon dynamics with graphics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.