Abstract

In this work, a hardware efficient algorithm for sequential in-phase (I) and quadrature (Q) imbalance (IQ imbalance) and carrier frequency offset (CFO) compensation under chromatic dispersion (CD) and phase noise (PN) environment is proposed. Two identical orthogonal frequency division multiplexing (OFDM) symbols, which are namely training sequences (TSs), are used to acquire CFO and IQ imbalance coefficients. The CFO is obtained by calculating phase differences between the two TSs. To achieve the image frequency interference factors which are caused by an IQ imbalance effect, each symbol of the TS is modulated on only a half of all the subcarriers while the remaining subcarriers are modulated with zeros. By doing this, the IQ imbalance coefficients are directly estimated without recursive calculation requirements. This brings a low complexity to implementation in hardware. The performances of the modeling system are evaluated by a numerical simulation method where the error vector magnitude (EVM), the bit error ratio (BER), and the mean square error (MSE) quantities are used as performance indicators. The numerical simulation results are showed that the performance of the modeling system is enormously improved even when highly dispersive channels and phase noise are considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.